



# High Pressure, Solids-Tolerant Vertical Canned Motor Pump for Reactor Circulation

# Chemical Facility Relies on Hayward Tyler's Chemical Slurry Pump Solution

The chemical facility in Louisiana is dedicated to the production of nitroalkanes and their derivatives. These chemical products are used as additives in coatings, pharmaceuticals, metalworking, water treatment, oil and gas, and other applications. The production of the specialty chemical IPHA requires a chemical reactor process that includes a circulation loop. This high pressure circulation process is a batch operation with 3-5 starts/stops per day. During normal operation the process fluid contains 1% or less of solids but in other situations content can reach 8%, such as a start sequence where solids may have accumulated.

After initially providing a canned motor retrofit to a competitor's existing pump, Hayward Tyler worked with the customer and a reputable mechanical seal manufacturer to develop a complete pump and motor solution for handling the troublesome process fluid.

To prevent the process fluid from entering the rotor chamber, the motor is isolated from the pumped fluid by a single mechanical seal. The system features an auxiliary pressurization, lubrication and cooling unit. The unit operates with demineralized water as its fluid medium to cool the motor and lubricate the bearings. The rotor chamber is pressurized to approximately 50 psig above the pump discharge pressure. By incorporating this feature, any seal leakage will be from the rotor chamber to the pump casing, thus preventing the process fluid from entering the motor.

Additionally, an expeller complete with pump-out vanes was included to keep solids from entering the mechanical seal cavity. The expeller and pump impeller were supplied in abrasion-resistant cast chromium iron material. Removable casing liners were also designed and supplied in the same material for increased protection of the pump casings.

After 20 years of reliable operation, Hayward Tyler replaced the firstgeneration units with new units of higher capacity to keep up with the facility's increased production. All of the same, successful product features were included in the most recent supply, as well as Hayward Tyler's latest condition monitoring system.

#### BASIC DESIGN DETAILS

- → Rated Flow: 1,800 gpm
- → Design Pressure: 1,200 psi
- → Design Temp: 300 °F
- → Rated Power: 60 hp
- → Power Supply: 460 V / 60 Hz / 3 ph
- $\rightarrow$  Designed and manufactured in Colchester, VT, USA

## **Project Summary**

#### SITE / LOCATION:

Louisiana, USA Nitroalkane-based Chemical Facility

SOLUTION AND FEATURES:

- → Single Stage Centrifugal Pump with Dry Stator Unit
- → Vertical design allows for a piping system supported installation (no baseplate required) and prevents gas entrainment that is otherwise possible in a horizontal design
- → Pump casing liners, impeller and expeller made of abrasion-resistant ASTM A532 Cl. 3 cast chromium iron
- → High pressure mechanical seal complete with pressurization, lubrication and cooling unit
- → Complete thrust disc assembly to take thrust in both directions and reliably handle significant transient conditions

# **Project Data Sheet**

| Product                          | Reactor Circulating Pump<br>with Chemical Slurry |           |
|----------------------------------|--------------------------------------------------|-----------|
| Quantity                         | Two (2) Duty + One (1) Spare                     |           |
| Codes and Standards              |                                                  |           |
| Design                           | Commercial                                       |           |
| Test Standard (Hydro)            | API 685 8.3.2                                    |           |
| Test Standard (Performance)      | API 685 8.3.3                                    |           |
| Test Standard (Vibration)        | API 610, Table 7                                 |           |
| Flange Standard                  | ANSI B16.5                                       |           |
| Materials Standard               | ASME / ASTM                                      |           |
| Electrical Standard              | IEEE 252 / NEMA MG1                              |           |
| Nozzle Loading                   | 2 x API 610                                      |           |
| Pump Details                     |                                                  |           |
| Ритр Туре                        | Centrifugal, Single Suction,<br>Single Discharge |           |
| Pump Size                        | 8" Suction x 8" Discharge with 11" Impeller      |           |
| Fluid Pumped                     | Nickel Catalyst Slurry<br>(IPHA Production)      |           |
| Solids Content                   | 8%                                               |           |
| Operating Temperature            | 160º F                                           | 72º C     |
| Rated Flow                       | 1800 gpm                                         | 410 m3/hr |
| Specific Gravity                 | 1.16 (max.)                                      |           |
| Rated Head (FT)                  | 60 ft                                            | 18 m      |
| Design Pressure (psig)           | 1200 psig                                        | 83 bar    |
| Design Temperature (oF)          | 300° F                                           | 149º C    |
| Hydrostatic Test Pressure (psig) | 1800 psig                                        | 124 bar   |
| Motor Details                    |                                                  |           |
| Motor Rating                     | 60 HP                                            | 40 kW     |
| Service Factor                   | 1.15                                             |           |
| RPM                              | 1750                                             |           |
| Power Supply                     | 460 V / 3 ph / 60 Hz                             |           |
| Motor Full Load Current          | 100.6 Amps                                       |           |
| Weights (Approximate dry)        |                                                  |           |
| Pump Casing & Liner              | 2436 lbs                                         | 1105 kg   |
| Back Cover & Liner               | 1133 lbs                                         | 514 kg    |
| Motor, Impeller & Expeller       | 1835 lbs                                         | 832 kg    |
| Total                            | 5404 lbs                                         | 2451 kg   |
|                                  |                                                  | -         |



Solids tolerant, chemical reactor circulating pumps installed in chemical plant in Louisiana

Removable upper and lower pump case liner made from hard, abrasion-resistant material for solids protection

Impellers and removable wear rings selected in hard, erosion- and corrosionresistant materials with heat treatment, as needed

Expeller with pump-out vanes to prevent solids from entering the seal cavity

High pressure mechanical seal within the canned design for prevention of the process fluid (including solids) from entering the motor

> Stiff journal bearing installed on a large diameter rotor shaft minimizes shaft deflection at mechanical seal faces and improves service life

Comprehensive thrust bearing designed for the application to accommodate a wide range of hydraulic loads, as needed



### Engineered solutions for the global energy sector

## UNITED KINGDOM

Hayward Tyler Ltd Luton, United Kingdom

+44 (0)1582 731144 luton@haywardtyler.com USA Hayward Tyler Inc Vermont, USA

+1 (802) 655 4444

vermont@haywardtyler.com

INDIA Hayward Tyler India Haryana, India

+91 129 251 3579/251 0124 delhi@haywardtyler.com

#### CHINA

Hayward Tyler Kunshan Kunshan, China

+86 512 57723311 kunshan@haywardtyler.com

Vertical design allows for a piping system-supported installation (no baseplate required) and prevents gas entrainment that is otherwise possible in a horizontal design

